992 research outputs found

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    Bayesian approach to Spatio-temporally Consistent Simulation of Daily Monsoon Rainfall over India

    Full text link
    Simulation of rainfall over a region for long time-sequences can be very useful for planning and policy-making, especially in India where the economy is heavily reliant on monsoon rainfall. However, such simulations should be able to preserve the known spatial and temporal characteristics of rainfall over India. General Circulation Models (GCMs) are unable to do so, and various rainfall generators designed by hydrologists using stochastic processes like Gaussian Processes are also difficult to apply over the vast and highly diverse landscape of India. In this paper, we explore a series of Bayesian models based on conditional distributions of latent variables that describe weather conditions at specific locations and over the whole country. During parameter estimation from observed data, we use spatio-temporal smoothing using Markov Random Field so that the parameters learnt are spatially and temporally coherent. Also, we use a nonparametric spatial clustering based on Chinese Restaurant Process to identify homogeneous regions, which are utilized by some of the proposed models to improve spatial correlations of the simulated rainfall. The models are able to simulate daily rainfall across India for years, and can also utilize contextual information for conditional simulation. We use two datasets of different spatial resolutions over India, and focus on the period 2000-2015. We propose a large number of metrics to study the spatio-temporal properties of the simulations by the models, and compare them with the observed data to evaluate the strengths and weaknesses of the models

    Prediction of Wave Energy Potential in India: A Fuzzy-ANN Approach

    Get PDF
    The conversion efficiency of wave energy converters is not only unsatisfactory but also expensive, which is why the popularity of wave energy as an alternative to conventional energy sources is subjacent. This means that besides wave height and period, there are many other factors which influence the amount of ā€œutilizableā€ wave energy potential. The present study attempts to identify these important factors and predict power potential as a function of these factors. Accordingly, a polynomial neural network was utilized, and fuzzy logic was applied to identify the most important factors. According to the results, wave height was found to have the maximum importance followed by wave period, water depth, and salinity. In total, 12 different neural network models were developed to predict the same output, among which the model with all of the 4 inputs was found to have optimal performance

    Gravitational wave memory for a class of static and spherically symmetric spacetimes

    Full text link
    This article aims at comparing gravitational wave memory effect in a Schwarzschild spacetime with that of other compact objects with static and spherically symmetric spacetime, with the purpose of proposing a procedure for differentiating between various compact object geometries. We do this by considering the relative evolution of two nearby test geodesics with in different backgrounds in the presence and absence of a gravitational wave pulse and comparing them. Memory effect due to a gravitational wave would ensure that there is a permanent effect on each spacetime and the corresponding geodesic evolution, being metric dependent, would display distinct results in each case. For a complete picture, we have considered both displacement and velocity memory effect in each geometry.Comment: 21 pages, 14 figure
    • ā€¦
    corecore